Autonomous Aerial Robot Using Dual-fisheye System
Room 2304 (Lifts 17-18), 2/F Academic Building, HKUST

Thesis Examination Committee

Prof Michael Yu WANG, ECE/HKUST (Chairperson)
Prof Shaojie SHEN, ECE/HKUST (Thesis Supervisor)



Safety is undoubtedly the most important requirement in moving robots applications, especially for micro aerial vehicles (MAVs). And both academia and industry have been working hard to equip drones with GPS-free self-localization, obstacle sensing, and autonomous navigation capabilities without prior information about the environments.
The fisheye cameras with ultra-wide filed-of-view (FOV) can provide more spherical coverage of the surrounding environment. A dual-fisheye omnidirectional visual-inertial navigation system (VINS) combine two fisheye cameras and an inertial measurement unit (IMU), cover the whole surroundings of the MAV. It is the minimum sensor suite lending the omnidirectional perception with lightweight and small footprint. 
Our system is a quadrotor equipped with two ultra-wide FOV fisheye cameras, which are rigidly mounted on two sides of a rod and facing opposite directions, a low-cost IMU, and heterogeneous onboard computing resources. The two fisheye cameras provide stereo observations with full 360-degree FOV in the horizontal direction and 60-degree FOV in the vertical direction, also provide full spherical monocular coverage of the surrounding situational awareness. Combine a highly accurate optimization-based dual-fisheye visual-inertial state estimator with online initialization and self-extrinsic calibration, three-dimensional map of the environments can be built. 

Room 2304 (Lifts 17-18), 2/F Academic Building, HKUST
Speakers / Performers:
Wenliang GAO
Post an event
Campus organizations are invited to add their events to the calendar.